Overview of ASCAC & the MDOB

Thomas A. Zang

Head, Multidisciplinary Optimization Branch (MDOB)
Aerospace Systems, Concepts and Analysis Competency (ASCAC)
NASA Langley Research Center (LaRC)

Outline

- ASCAC and MDOB in the current LaRC Organization
- MDOB Background
- External & Internal Input on MDO Needs
- Sponsoring NASA Programs

Current LaRC Organization

Aerospace Systems, Concepts and Analysis Competency

From the Runway to the Planets...

Improving Quality of Life and Enabling Exploration

- Safety
- Environment
- Performance

0.0002

0.0001

0.0000

-0.0001

ASCAC Areas of Expertise

- Aerospace Mission Analysis
 - for synthesis of advanced aerospace missions to address requirements resulting from science, commercial, and exploration requirements.
- Aerospace Systems Analysis & Concept Development
 - to define aerospace vehicles and spacecraft concepts from a systems perspective to satisfy prescribed mission architectures and identify enabling technologies for performance, cost and safety
- Advanced Analysis and Design Method Development/Application
 - to enable the mission and system analysis and technology trades for advanced aerospace system concepts
- Technology Impact Analysis
 - to investigate and analyze the impact of key critical technologies on the feasibility and operation of aerospace vehicles

Aerospace Systems, Concepts and Analysis Competency

Space Transportation & Planetary Analysis

Vehicle Analysis Branch

Space Mission Analyses

Spacecraft & Sensors Branch

Advanced Civil Airplane & Transportation Systems Analysis

Systems Analysis Branch

Multidisciplinary Design Optimization

Survivable, Advanced, Military Vehicles

Advanced Aircraft Branch

Computational Aerosciences

MDO Branch

CAS Team

Multidisciplinary Design Optimization

Charter: develop MDO methods to increase design confidence and to cut development time

Computational Aerosciences

Basic Research/System Software

Metacenter Coral Cluster

Learning Technologies

Educational technology to develop future scientists and engineers skilled in high performance computing

Advanced Methods

"Compute as fast as engineers can think."

Aerospace Design Vision

Improved Distribution of Knowledge and Efforts

MDO Definition

Multidisciplinary Design Optimization (MDO) is a methodology for the design of complex engineering systems and subsystems that coherently exploits the synergism of mutually interacting phenomena

MDO Applied to an Aerospike Nozzle

Nozzle Modeled by a 2-D Section

Nozzle Geometry Design Variables

MDO Impact on Aerospike Nozzle Model Problem

Sequential Design

- optimize the aero shape for maximum Isp
- then optimize the structure for minimum GLOW

MDO Design

- optimize the aero & structures together for minimum GLOW
- produces 4% reduction in GLOW

MDR Conceptual Elements

Information Design Problem Organization and Analysis and Formulations and **Processing Approximations** Culture **Solutions** and Management **Cost-fidelity Design problem** Software **MD** Training trade-off formulation engineering **Problem** Data and software **MD** process **Approximations** de-/re- composition standards insertion **High-fidelity results** Data visualization, **Optimization MD** in integrated inclusion algorithms product teams storage, management Parametric product **Optimization MD** in existing **MD** environment data models organization procedures SD analysis and SD **Human interface** Based on Special sensitivity analysis optimization Session on Industry Needs at 1998 MD analysis and **MD MD** computing AIAA/MA&O sensitivity analysis optimization

LaRC MDO Role

LaRC performs MDO R&D in the technical areas covered by the MDR Conceptual Elements to provide advanced MDO Technology

- to the U. S. Aerospace Industry [1995 emphasis] for applying
 MDO in the design of aerospace vehicles
- to NASA organizations [2000 emphasis] performing a Mission/Systems Analysis function for use in
 - conducting multidisciplinary systems studies of advanced aeronautical vehicles and the air traffic system including economic and risk assessment analyses (SAB & AAB)
 - conducting system analyses & technology assessments to identify & enhance technological advancements for space transportation, spacecraft and instruments concepts (VAB & SSB)

MDO at Langley

LaRC Organization 1994-1998

Research and Technology Group

MDO Organization in RTG

Significant MDO/ASCAC Events

1989	LaRC charters HiSAIR
1991	HPCCP MDO starts
1993	RTG & program offices established
1994	RTG charters LCAP Team
1994	MDO industry tour
1994	MDOB established
1995	MDOB rotorcraft industry tour
1995	AAC/ARTS review of NASA MDO "program"
1996	MDOB Peer Review
1997	RTG loses control of Base \$
1998	ASCAC established
<i>2000</i>	HPCCP ELVIS planning
2001	ASCAC Methods Development Peer Review
2002	ASCAC strategic planning

1994 MDO Industry Tour

- 9 Half-Day visits in 6/94
 - Cessna & Learjet
 - McDonnell-Douglas, St. Louis
 - Northrop-Grumman (B-2 Division)
 - Lockheed-Martin, Palmdale
 - Boeing, New Large Airplane & Corporate R&D
 - Aerospace Corporation
 - McDonnell-Douglas, Huntington Beach
- Contemporaneous Contacts
 - Rockwell Chief Scientist at LaRC
 - HSR/LCAP efforts w. Boeing & McDonnell-Douglas

Major Conclusions from 1994 MDO Industry Tour

- There is broad support for MDO research and applications
- New aerospace system design philosophy is to maximize affordability with constraints on performance
- Bringing cost into the design changes the fundamental mathematical nature of the design problem

1994 Industry Tour Summary: High Payoff MDO Development Areas

(red italics subjects are worked by MDOB)

- CAD-based geometric modeling and parameterization
- Preliminary design capability including FEM-based structures, aerodynamics (loads) and acoustics (interior and exterior noise)
- P/A/S capability to simulate mission, identify critical dynamic loads and run through fatigue and damage assessment
- Virtual prototyping and virtual manufacturing
- MDO methodology to include discontinuous functions, discrete variables, statistical and probabilistic approaches, fuzzy logic, heuristics and knowledge bases
- Development of generic MDO tools [i.e., process management tools (DeMAID) and automatic differentiation tools (ADIFOR)]
- Help facilitate development of models for manufacturing and economics

ASCoT Project (1998-2002)

(Aerospace Systems Concept to Test)

Project Vision

Physics-based modeling and simulation with sufficient speed and accuracy for validation and certification of advanced aerospace vehicle design in less than 1 year

Project Goal

 Provide next-generation analysis & design tools to increase confidence and reduce development time in aerospace vehicle designs

Objective

- Develop fast, accurate, and reliable analysis and design tools via fundamental technological advances in:
 - Physics-Based Flow Modeling
 - Fast, Adaptive, Aerospace Tools (CFD)
 - Ground-to-Flight Scaling
 - Time-Dependent Methods
 - Design for Quiet
 - Risk-Based Design

Benefit

- Increased Design Confidence
- Reduced Development Time

Morphing Project (1998-2002)

Long-Term Vision: Aerospace Vehicles that Efficiently Adapt to Handle Diverse Mission Scenarios

NASA Morphing Project Objective:

Develop and assess innovative, advanced technologies and integrated concepts to enal

Technical Challenges:

- Active materials for sensors and actuators
- Compliant, load-bearing structures
- Unsteady aerodynamics
- Non-intrusive, efficient electronics
- Optimization and Controls
- Manufacturability and Reliability
- New structural and vehicle control concepts

Technical Approach:

- Create Innovative Technologies
- Address Application Issues
- Demonstrate Performance
- Devise Revolutionary Concepts

RACRSS Project (2000-2001)

(Revolutionary Airframe Concept Research & System Studies)

Project Goal

 Accelerate the maturation of innovative aircraft concepts that have large potential impact on the Aeronautics Enterprise Three Pillars for Success Goals

Objectives

- Enhance interdisciplinary problem solving across base programs and with industry/academia
- Create, mature, and develop technology and configurations for application to experimental flight vehicles (X-Planes)

Benefit

- Significant acceleration in the development of viable advanced technologies and configurations
- Provide vehicle focus for integrated research within the Aeronautics Enterprise
- Identify potential experimental aircraft (X-Plane) concepts

Ultra-Efficient Engine Technology

Propulsion Airframe Integration Project (2000-2002)

Goal: Reduce aircraft CO₂ emissions by developing advanced technologies to yield lower drag propulsion system integration for a wide range of vehicle classes

Conventional Configuration

Enable Ultra High Bypass Ratio Engine Integration

- Advanced CFD design methods
- Active Shape Control Variable Area Nozzle
- •Active Shape Control Variable Radius Nacelle Leading Edge

Revolutionary Configuration

Enable Boundary Layer Ingestion S-inlet Nacelle Integration

- Advanced CFD design methods
- Active Flow Control S-inlets
- •Active Flow Control boundary layer reenergization

HPCC Program (1992-2001)

(High Performance Computing and Communications)

- Computational AeroSciences Goal
 - Enable improvements to NASA technologies and capabilities in aerospace transportation through the development and application of high-performance computing technologies and the infusion of these technologies into the NASA and national aerospace

HSR Program (1990-1999)

(High Speed Research)

Phase I (1990-92) Goal:

develop technology concepts for environmental compatibility

Phase II (1993-99) Goal:

demonstrate the environmental technologies and define and demonstrate selected high-risk technologies for economic viability

ISE Program (2000-2001)

(Intelligent Synthesis Environment)

Vision

To effect a cultural change that integrates into practice widely-distributed science, technology and engineering teams to rapidly create innovative, affordable products

Long-Term Goal

To develop the capability for personnel at dispersed geographic locations to work together in a virtual environment, using computer simulations to model the complete life-cycle of a product/mission with near real-time response time before commitments are made to produce physical products

ISE Large-Scale Applications

(NASA is the Customer)

•Reusable Space Transportation Systems (RSTS)

•Develop and demonstrate an integrated environment (w/distributed users, applications and data) to support RSTS design from concept analysis through detailed system design, including mission performance, risk, and life-cycle costs [now called AEE]

Shuttle

•Ability to support/perform virtual Shuttle assessments (e.g. technical, operational, programmatic), and incorporation of external data for system visualization

•International Space Station

•Create a virtual International Space Station "simulator" that will model the ISS vehicle and system performance in any user-selected configuration and environment

Integrated Exploration and Science

•Life-cycle simulation of missions to Mars in a realistic Martian environment for the purpose of mission and system design, project science planning, and mission operations

Advanced Earth Observation

•Mission simulation and simulation-aided-design of science missions, both Earth and Space Science, starting with the definition of science measurement and phenomena, and ending with a visualized, simulated validation of the systems design to take the measurement ASCAC Methods Peer Review, November 2001 Overview

2nd Generation RLV Project

(2001-2002)

- NASA's goals for the second generation RLV are to:
 - Improve the expected safety of launch so that by the year 2010 the probability of losing a crew is no worse than 1 in 10,000 missions.
 - Reduce the cost of delivering a pound of payload to low Earth orbit from today's \$10,000 down to \$1000 by the year 2010.
- 2nd Gen RLV/AEE Objective
 - Deliver to the 2nd Generation RLV Program and ISAT Team "an advanced engineering synthesis environment complete with lifecycle simulation models capable of modeling technology,

